Best approximation-preserving operators over Hardy space

نویسندگان

چکیده

Let $$T_n$$ be the linear Hadamard convolution operator acting over Hardy space $$H^q$$ , $$1\le q\le \infty $$ . We call a best approximation-preserving (BAP operator) if $$T_n(e_n)=e_n$$ where $$e_n(z):=z^n,$$ and $$\Vert T_n(f)\Vert _q\le E_n(f)_q$$ for all $$f\in H^q$$ $$E_n(f)_q$$ is approximation by algebraic polynomials of degree most $$n-1$$ in space. give necessary sufficient conditions to BAP $$H^\infty apply this result establish an exact lower bound bounded holomorphic functions. In particular, we show that Landau-type inequality $$\left| {\widehat{f}}_n\right| +c\left| {\widehat{f}}_N\right| \le E_n(f)_\infty $$c>0$$ $$n<N$$ holds every H^\infty iff $$c\le \frac{1}{2}$$ $$N\ge 2n+1$$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Hardy space approximation

We consider the problem of minimizing the distance ‖f − φ‖Lp(K), where K is a subset of the complex unit circle ∂D and φ ∈ C(K), subject to the constraint that f lies in the Hardy space H(D) and |f | ≤ g for some positive function g. This problem occurs in the context of filter design for causal LTI systems. We show that the optimization problem has a unique solution, which satisfies an extrema...

متن کامل

Hardy Space Estimates for Multilinear Operators, Ii

We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/n+m+ 1, where m is the highest vanishing moment of the multilinear operator, we prove a weak type result. 0. Introduction A wel...

متن کامل

Constrained Hardy Space Approximation II: Numerics

In a previous paper [Constrained Hardy Space Approximation, preprint available at http://www.mathematik.uni-karlsruhe.de/iwrmm/seite/ preprints/] we considered the problem of minimizing the distance ‖f − φ‖Lp(K), where K is a subset of the complex unit circle ∂D and φ ∈ C(K), subject to the constraint that f lies in the Hardy space H(D) and |f | ≤ g for some positive function g. This problem oc...

متن کامل

Estimates for approximation numbers of some classes of composition operators on the Hardy space

We give estimates for the approximation numbers of composition operators on H, in terms of some modulus of continuity. For symbols whose image is contained in a polygon, we get that these approximation numbers are dominated by e−c √ . When the symbol is continuous on the closed unit disk and has a domain touching the boundary non-tangentially at a finite number of points, with a good behavior a...

متن کامل

Approximation numbers of composition operators on the Hardy space of the ball and of the polydisk

We give general estimates for the approximation numbers of composition operators on the Hardy space on the ball Bd and the polydisk D . Mathematics Subject Classification 2010. Primary: 47B33 – Secondary: 32A07 – 32A35 – 32A70 – 46E22 – 47B07 Key-words. approximation numbers; bounded symmetric domain; composition operator; Hardy space; polydisk; Reinhardt domain; several complex variables

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2023

ISSN: ['1664-2368', '1664-235X']

DOI: https://doi.org/10.1007/s13324-023-00825-7